Missing data imputation for fuzzy rule-based classification systems
نویسندگان
چکیده
Fuzzy rule-based classification systems (FRBCSs) are known due to their ability to treat with low quality data and obtain good results in these scenarios. However, their application in problems with missing data are uncommon while in real-life data, information is frequently incomplete in data mining, caused by the presence of missing values in attributes. Several schemes have been studied to overcome the drawbacks produced by missing values in data mining tasks; one of the most well known is based on preprocessing, formerly known as imputation. In this work, we focus on FRBCSs considering 14 different approaches to missing attribute values treatment that are presented and analyzed. The analysis involves three different methods, in which we distinguish between Mamdani and TSK models. From the obtained results, the convenience of using imputation methods for FRBCSs with missing values is stated. The analysis suggests that each type behaves differently while the use of determined missing values imputation methods could improve the accuracy obtained for these methods. Thus, the use of particular imputation methods conditioned to the type of FRBCSs is required.
منابع مشابه
Microsoft Word - ICAME09_opti_leslabay_final
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural ne...
متن کاملMicrosoft Word - 5_.rtf
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural ne...
متن کاملMicrosoft Word - Pilar Rey-del-Castillo.rtf
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural ne...
متن کاملCategorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural ne...
متن کاملMachine Learning Based Missing Value Imputation Method for Clinical Dataset
Missing value imputation is one of the biggest tasks of data pre-processing when performing data mining. Most medical datasets are usually incomplete. Simply removing the cases from the original datasets can bring more problems than solutions. A suitable method for missing value imputation can help to produce good quality datasets for better analysing clinical trials. In this paper we explore t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 16 شماره
صفحات -
تاریخ انتشار 2012